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Abstract

This research aims to build a computer-aided diagnosis platform to help medical experts

analyze mammogram images, diagnose breast cancers, and integrate the medical infor-

mation system in Palestine with the medical imaging prediction model. Furthermore,

use Artificial Intelligent to analyze, predict and classify medical cases. The research

problem is that breast cancer is the most commonly diagnosed cancer and the leading

cause of cancer death among women in Palestine. Early breast cancer screening and

detection are crucial for decreasing death rates and successful treatment. The primary

objectives are to use Artificial Intelligence (AI) to aid early and rapid breast cancer

diagnosis and build an experimental framework using state-of-the-art Deep Learning

methods. The study’s methodology is to collect and reprocess the data to increase

the quality of the data, and the processing data will use to learn the Machine Learn-

ing model to predict the patient’s cases. The Palestinian Ministry of Health (MOH)’s

dataset consists of 783 cases divided into 233 without a tumor, 226 with a benign tu-

mor, 163 with a benign tumor, and 160 with a malignant tumor. Images are 45.6%

normal, 15.7% malignant, and 38.3% benign. The MOH’s dataset of mammograms is

rich in quantity but needs more stability in classification and storage. The Machine

Learning (ML) model can predict cases of breast cancer patients with or without an

infection with an accuracy of 83% and can be deployed on a web application program to

help in the MOH’s work. We have conducted Six experiments to reach the best results

and build the most accurate model. The best model was VGG-16, with a validation

loss of 0.4271 and a validation accuracy of 83.26%. The F1 score decreased when the

model performance was conducted on the MIAS public dataset to 63.87%. Data qual-

ity, classification, tabulation, and suitability are critical factors in raising the model’s

efficiency.
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Glossary

Artificial Intelligent Artificial intelligence focuses on developing computers capable

of human-like thought processes, extending human intelligence through comput-

ers.. ii

Artificial Neural Network ANNs are parallel computational models mimicking hu-

man brain function, consisting of simple processors and weighted connections,

generating simple non-linear outputs.. 2

BI-RADS The Breast Imaging Reporting and Data System (BI-RADS) was initiated

by the American College of Radiology (ACR) in the 1980s to standardize mam-

mography practice reporting. Its data-driven dictionary of imaging features offers

opportunities for quality assurance, communication, research, and patient care.

The BI-RADS lexicon’s history provides a valuable guide for future lexicon de-

velopment. The system ranks test findings according to seven categories, ranging

from normal to highly suspicious or malignant. It also includes four additional

categories for mammograms, describing the level of breast density.. 17

Computer Vision Computer vision is an AI field that uses digital images and videos

to derive meaningful information and make recommendations, surpassing human

capabilities through advanced cameras, data, and algorithms.. 2

Deep Learning Deep learning imitates human brain learning and uses complex im-

ages, text, and audio patterns to enable precise insights and predictions.. ii

Generative adversarial networks GANs are AI algorithms solving generative mod-

eling problems using training examples and probability distribution, generating

high-resolution images and using deep learning for prediction improvement.. 7

Inception-v3 Inception v3 is a convolutional neural network for image analysis and

object detection, with 78.1% accuracy on the ImageNet dataset.. 6

xi



Machine Learning Machine learning enhances computer performance without hu-

man intervention, enabling adaptability and problem-solving in data science prob-

lems through continuous learning and experience.. ii

Natural Language Processing Natural Language Processing involves computa-

tional techniques for analyzing and representing natural texts for human-like

language processing in various tasks.. 2

ResNet ResNet, introduced in 2015, excels in deep residual learning, replacing VGG-

16 layers and efficiently training networks with 100-1000 layers.. 3, 6

Transfer Learning Transfer learning enhances target learners’ performance by trans-

ferring knowledge from related domains, reducing data dependence.. 3

VGG-16 VGG16, a 16-layer convolutional neural network, achieves 92.7% accuracy

in ImageNet dataset, replacing large filters on AlexNet with smaller 3x3 filters..

ii

xii



Chapter 1

Introduction

1.1 Background

ML methods (Mitchell, 1997) and Deep Learning (DL) (Goodfellow et al., 2016a) have

been successfully applied to a wide range of applications across various domains, in-

cluding medical imaging (Spanhol et al., 2015), engineering (Elyan et al., 2020), con-

structions, sports, and others.

Convolutions Neural Networks (CNNs) (Krizhevsky et al., 2012), in particular, played

a crucial role in significantly advancing the field of image processing and understand-

ing. These advances have greatly helped improve various medical applications, such

as Energetic High-Frequency Electromagnetic Radiation (X-ray) classification, heart

segmentation, robotic surgery, etc.

The main objective of this project is to provide a platform for computer-aided diag-

nostics that will assist medical professionals in analyzing mammography pictures and

identifying breast malignancies. The solution will be developed for testing purposes at

some medical points of care in Palestine.

1.2 Research Problem

Breast Cancer (BC) is a common disease affecting women worldwide (Key et al., 2001).

In Palestine, the situation is even worse. According to the Palestinian Ministry of

Health MOH figures (PHIC, 2020), BC is the most commonly diagnosed cancer and the

leading cause of cancer death among women in Palestine. In 2020, more than 526 new

BC cases were reported in Palestine. This is almost 16.5% of the total cancer cases in the

country and is equivalent to 19.1 people per 100,000 population. The figures of the MOH
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indicate an increase in female diagnoses of this disease, with an incidence rate reaching

38.4 per 100,000 female population. Early BC screening and detection are crucial for

decreasing death rates and successful treatment. In this project, we aim to build an

intelligent data-driven framework to process, analyze and predict signs of BC from

relevant medical images (e.g., mammograms, Ultrasounds, X-rays, etc.). The recent

progress in DL and Deep CNNs resulted in significant improvement in the Computer

Vision domain. Today, intelligent algorithms showed superior performance over humans

and medical images in analyzing and understanding medical images. Furthermore,

various complex tasks were solved using the latest AI and DL domain development,

including image classification, segmentation, and object detection and recognition (e.g.,

localizing abnormality in a medical image). Hence, using such advanced technologies

and algorithms can significantly advance health and well-being in Palestine, especially

in an area such as cancer early detection and recognition. This can help the medical

staff with an accurate decision support system to help save lives. The project team will

include the student Ziyad Eleyan and the supervision team Dr. Hassan Abu Hassan.

All results and findings will be shared with the MOH, and any possible dissemination

will be subject to MOH approval.

1.3 Research Objectives

The main objective of the research is to integrate the medical information system in

Palestine with the medical imaging system and use artificial intelligence AI to analyze,

predict and classify medical cases. The overall objectives of this project can be outlined

as follows:

• Use AI to aid early and rapid BC diagnosis to decrease BC death.

• Build and evaluate an experimental framework using state-of-the-art DL methods

to detect and classify the tumor as malignant or benign.

• Make a web application portal to upload and classify medical images of BC and

host the web application in the MOH. Report and discuss results and findings to

evaluate the accuracy in real cases and improve the performance of this applica-

tion.

• Propose a solution to build a technical system linking the Palestinian health infor-

mation system with health medical images, including mammograms, Computed

tomography (CT) scans, and ultrasound with biopsy results and the adoption of

AI technology to determine the susceptibility to BC in the future.

• Outline future directions for developing AI-driven solutions for medical-related
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problems in Palestine.

• Critically evaluate and review existing literature on medical image classification

using ML and DL approaches and Breast Cancer Detection (BCD) using DL,

emphasizing BC.

1.4 Importance of the study

The importance of the study lies in developing early detection tools for BC with high

accuracy, low cost, and in a short time. These tools can reduce cancer patients’ death

incidence through early disease detection. In addition, these tools can be generalized

to most other cancers in Palestine.

1.5 Thesis Structure

The remaining parts of this thesis are as follows:

Chapter 2 Literature Review. In this chapter, a detailed critical evaluation of existing

related literature will be thoroughly reviewed, evaluated, and summarised.

Chapter 3 Methods. In this chapter, methods and datasets will be presented, justified,

and discussed.

Chapter 4 Implementation. This chapter deals with the technical implementation of

the experimental framework for BC detection.

Chapter 5 Experiments and Results. In this chapter, experiments and results will be

presented, discussed, and interpreted.

Chapter 6 Conclusion. Here, final findings, conclusions, and future directions will be

outlined.

1.6 Conclusion

AI is among the most advanced scientific fields and has overlapped with all scientific

fields, including medicine. Cancers, in general, and BC are among the real threats to

humanity, and early cancer detection is one of the most critical factors that lead to

treatment. There is a high chance that AI can be used for early cancer detection to

protect patients with low cost and high accuracy.
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Chapter 2

Literature Review

In this chapter, a review of relevant literature will be examined and critically evaluated.

First, computer vision core tasks will be introduced in the context of medical images.

This will be followed by a focused review of work related to breast cancer classifica-

tion using deep learning-based methods. Finally, challenges will be discussed, and a

conclusion will be drawn.

2.1 Introduction

Diagnosis of cancer screening has been investigated for more than 40 years. BC can be

found and diagnosed using medical imaging techniques such as diagnostic mammogra-

phy X-ray, magnetic resonance imaging, ultrasound (sonography), and thermography.

However, a biopsy is an accurate method to determine if cancer is present. The surgical

(open), vacuum-assisted, core needle and fine needle aspiration techniques are the most

widely used for biopsies.

AI is effectively used in medicine to diagnose and lower errors. AI, for instance, helps

with early disease detection. AI is also used in diagnostic procedures and screenings.

Significant advancements have been made in automatic medical imaging analysis in

recent years. For instance, DL-based techniques have been successfully used to iden-

tify COVID-19, and they have also been used to manage Magnetic Resonance Imag-

ing (MRI) images.

Computer Vision (CV) aims to enable the computer to process and evaluate visual

content, such as 2D, movies, and 3D images. CV is extensively used in various in-

dustries, including oil and gas, fishing and agriculture, medical image analysis, robotic

surgery, etc. Three major CV tasks include image classification, object identification

and recognition from images, and image segmentation. Image classification challenges
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are the most frequent CV issues. The complete image must be categorized to clas-

sify a picture into one or more separate classes in classification issues. However, there

are several challenges in using computer vision in practical situations, such as poorly

defined problems and the quantity and quality of data.

2.2 Artificial Intelligent

AI is a general term that implies using a computer to mimic intelligent human behavior

with minimal human intervention (Hamet and Tremblay, 2017). Also, AI is the set of

activities that make the machine intelligent (Nilsson, 2009). AI applies to various

medical items, such as robotics, medical diagnosis, statistics, and human biology. AI

includes ML, Neural Networks, CV, Robotics, Speech Processing, Natural Language

Processing, and DL (Stone et al., 2016). AI is broad and includes reinforcement,

unsupervised, and supervised machine learning. However, this thesis will concentrate

on supervised learning.

2.2.1 Machine Learning

ML allows computers to find hidden patterns (Bishop and Nasrabadi, 2006). ML is a

data analysis method that automates the construction of an analytic model (Hackeling,

2017). ML allows the computer to learn without being explicitly programmed. This is

achieved by using a large amount of labeled training data. Therefore, ML is classified

as supervised, unsupervised, and reinforcement learning. Supervised learning is about

learning from labeled data. For example, if we have a data set of 100 images labeled

as benign and malignant cases, we can build a model to predict the diagnoses for new

patients. Supervised learning algorithms are trained using the addressed set, such as the

input where the selected output is known. The network receives a set of corresponding

inputs and outputs, and the algorithm learns by comparing its actual output with

the real output to find errors. Supervised learning is commonly used in the health

sector, where historical data predict possible future events (Caruana and Niculescu-

Mizil, 2006).

2.2.2 Deep Learning

Artificial Neural Network simulates the human biological brain with one input, hidden,

and output layer. DL refers to neural networks with more than one hidden layer. DL

enables the computer to build a complex concept from a simple idea. DL is associ-

ated with transforming and extracting features that attempt to establish a relationship

between brain stimuli and associated neural responses. DL allows machines to solve

complex problems even when using a data set that is very diverse, unstructured, and
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inter-connected (Goodfellow et al., 2016b).

2.2.3 Convolution Neural Network

In CV, Artificial neural networks (ANN)s will increase the parameters and lose the two-

dimension information when flattening the images. So CNNs are created to convolve

the images by multiple filters to extract the image features. The CNNs model is trained

to determine the best filter weight values. And these will help to reduce the number

of parameters as ANN by focusing on local connectivity. Not all neurons will be fully

connected, only connected to a subset of local neurons in the next layer. CNNs are

fed into another convolution layer, allowing the network to discover patterns in the

patterns, usually with more complexity for later convolutions layers. Lenet-5, AlexNet,

GoogLeNet, and ResNet are the famous CNNs architecture.

2.2.4 Transfer Learning

The lack of a large and publicly available annotated database is one of the biggest

challenges facing DL, so Transfer Learning is one of the solutions that help to overcome

this problem (Ribeiro et al., 2016). Transfer Learning (TL) is an ML pattern that forces

additional source data from other interconnected fields for learning (Zhu et al., 2011).

TL has solved various practical issues, including speech recognition, image processing,

and Natural language processing (NLP). The TL can be categorized into transductive,

inductive, unsupervised, and destructive (Niu et al., 2020). TL trains the model with

big data set to transfer the knowledge of this model to another small data set with

minor tuning for the original model. Furthermore, TL can leverage an existing neural

network architecture proven to work on problems similar to our problem, which has

already learned patterns on similar data to our data that will produce an accurate

module with fewer data.

2.3 Medical Images

Medical images provide spatially resolved information about the human body. Various

medical applications use different modalities (Oakden-Rayner, 2020). The most com-

mon medical modality used is radiography, magnetic resonance imaging, and ultrasound

imaging (Ehrhardt, 2015). Medical image screening in all medical fields includes emer-

gency medicine, oncology, orthopedics, and surgery. For example, a mammogram is a

projection radiology image of the breast used to diagnose early signs of breast cancer.

Medical image screening tasks can broadly be classified, recognized, and segmented.
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2.3.1 Medical Image Compression

Digital Imaging and Communication in Medicine (DICOM) is the standard for medi-

cal imaging and related information. DICOM defines the formats for medical images

that can be exchanged with the data and quality necessary for clinical use(Bidgood

et al., 1997). Most hospital digital image data are stored in DICOM format. However,

DICOM is mainly used in a clinical setting and often requires a conversation with other

formats for ML. Neuroimaging informatics technology (NIFTI) is an open format for

storing medical image data that efficiently hold medical image data together with nec-

essary metadata. However, NIFTI is not a clinical standard, mainly used in research

settings (Larobina and Murino, 2014).

2.3.2 Medical Image Pre-processing

Preprocessing is essential for breast cancer detection, and various techniques are used

to improve image quality, remove noise, preserve edges, and enhance and smoothen the

image (Ramani et al., 2013). Preprocessing is the data preparation for DL prediction

(Jeyavathana et al., 2016). DL method may need a particular input format to improve

data access during training. Medical image preprocessing includes augmentation, scal-

ing, normalization, noising removal, and complex artifact correction. The appropriate

preprocessing for medical imaging in the proper order can enhance the undertaking of

the DL model (Masoudi et al., 2021).

2.3.3 Augmentation

One of the most important methods that help increase medical images is augmentation.

DL needs augmentation when insufficient annotated medical images are required to

train the model (Frid-Adar et al., 2018). Data augmentation has become a widespread

method for expanding the size of a training dataset, specifically in domains where

big datasets aren’t available. Data augmentation has become a general method for

increasing the size of a training dataset, specifically in domains where big datasets

aren’t available (Chlap et al., 2021).

2.3.4 Medical Images Public Datasets

Various datasets are available in the public domain. This data has helped advance re-

search and development in medical image analysis and improvement. Typical datasets

include Mammographic Image Analysis Society (MIAS) (Suckling et al., 2015), mini-

MIAS, CBIS-Digital Database for Screening Mammography (DDSM), DDSM, and

Digital Breast Tomosynthesis (BCS-DBT) Dataset. A specific example of the breast

cancer public set includes the histopathology dataset The BreakHis generated from
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breast tissue biopsy slides for 82 patients, generating 7909 images with four magnifi-

cation sizes. The data set has two primary classes, with four types for each category.

The proposed model accuracy for the BreakHis dataset is 80-85%, depending on the

image magnification, feature extraction, and classifier algorithm (Spanhol et al., 2015).

2.3.5 Medical Image Classification

Deep transfer learning is used in most of the existing research in one way or another to

address medical image classification problems. For example, Umar Ibrahim et al. pre-

sented a framework using a pre-trained AlexNet Model to classify Chest X-rays (CXR)

images into different categories (e.g. COVID19, normal, bacterial, viral pneumonia,

and other types of abnormalities) (Ibrahim et al., 2021). The authors evaluated their

methods using four open datasets, including CXR dataset1, Kaggle’s Data2, Kaggle

Covid Dataset3, and a dataset of CT scan images and CXR (Kermany, 2018) and

reported relatively high sensitivity and accuracy with a marginally lower F1 score. In-

terestingly, no preprocessing or data augmentation has been done, demonstrating the

potential of using trained models to complete such classification tasks.

Similarly, Abbas et al. classified COVID-19 from CXR scan images based on TL (Abbas

et al., 2020). The authors employed widely used CNNs techniques to extract image

features, including Vgg16, ResNet, etc. After reducing the dimensionality of the data

using a dimension reduction technique on the features space, they used a clustering

algorithm (K-means) to find within-class similarity before supplying the features to

the final classifier. A 98% accuracy rate was reported. However, because only two

datasets with a limited number of instances were used for evaluation, it is challenging

to determine how generalizable the suggested methods are to other unobserved data.

X and y presented CNNs-based methods to classify X-ray images as infected.

In recent years, Convolutions Neural Network based (CNN-based) methods have gained

significant popularity in detecting pneumonia and COVID-19 in CXR scan images,

especially after the outbreak of COVID-19 in December 2020. However, training

CNN-based methods, especially deep models, require many training instances (images),

and such data is only sometimes readily available. One common alternative to over-

come this requirement is to use a popular method called TL (Pan and Yang, 2009). In a

nutshell, TL means reusing a model created to perform a certain task to solve a similar

one/s. Technically speaking, this means using some of the most common architectures

of CNNs that were trained using many images to perform a specific classification task in

solving other equivalent tasks (e.g., pneumonia detection). Various CNN-based models

1https://github.com/ieee8023/covid-chestxray-dataset
2https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
3https://www.kaggle.com/datasets/sudalairajkumar/novel-corona-virus-2019-dataset
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exist in the literature and are often used for TL. These include AlexNet (Krizhevsky

et al., 2012), GoogleNet (Szegedy et al., 2015), Inception-v3 (Szegedy et al., 2016),

Vgg16 and 19 (Simonyan and Zisserman, 2015), ResNet (He et al., 2016) and others.

It should be noted that most of these common CNNs architectures have been trained

using the ImageNet Dataset, which contains more than 1.2 million images. Reusing

these and other models is relatively straightforward and only requires freezing the lower

layers of the pre-trained models. The motivation is that the CNNs models’ lower lay-

ers learn generic features common across various images and domains, such as edges,

corner points, etc. The only requirement to apply transfer learning includes changing

the input layers to align with the input size of the data and the output layer (final

outcome/s). However, this approach needs to be fine-tuned in some situations, where

all lower layers are frozen while the deep layers (the last few layers of the model) are

retrained using the new dataset. Figure 2.1 provides a schematic diagram to illustrate

this technique which has significantly accelerated research, development, and applica-

tion of DL-based methods across different domains., and made it possible to train deep

models using relatively small-sized datasets and with moderate computing power.

Figure 2.1: Transfer Learning

One of the most cited papers in this area (Minaee et al., 2020) also used deep TL to

detect COVID-19 from CXR images. They used common CNNs architectures (e.g.,

ResNet, DenseNet, and their variants) pre-trained on the public dataset image. They

also fine-tuned the final layer in these models using 2000 images collected from public

resources. Using simple data augmentation techniques such as Data augmentation,

including image flipping, slight rotation, and adding minor distortions to the training

data, they reported overall sensitivity and specificity rates greater than 90% on a test
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set of 3000 images. The authors released the data and the methods which make the

results reproducible. However, further experiments are required to assess the model’s

performance across other data distributions. Furthermore, it would be interesting to

see if fine-tuning additional deeper layers would result in better results.

Rahaman et al. Used a customized dataset of 860 CXR scan images from public

resources. The dataset samples were chosen to maintain balanced distribution between

the different categories (pneumonia, COVID-19, and normal cases), and basic data

augmentation techniques were applied to account for over-fitting. The experiment

used various pre-trained standard models, including Vgg16 and 19, ResNet, DenseNet,

and Inception. The result showed superior performance of VGG19 with precision and

recall reaching 92% and 90%, respectively (Rahaman et al., 2020). It should be noted,

however, that balanced distribution is not often guaranteed in medical data. Therefore

these results might not hold in the presence of a biased imbalanced distribution of

samples.

2.4 Challenges

Most challenges in AI Medical Images are not considered technical. Among these

challenges are the amount of data available, the quality of this data, and the accuracy

of the correct classification. The core challenge is the lack of appropriately annotated

large-scale data sets (Altaf et al., 2019). The imbalance of samples in datasets is one

issue that affects conventional CV tasks. In order to train a model for identifying

breast cancer in mammograms, for example, a dataset might only have a small number

of malignant samples but a very high number of normal samples.

Sharing medical data is far more complex than sharing other types of information. Ef-

fectively, data privacy is both a societal and a technical issue. To restrict its usage or

exposure, researchers believe anonymizing patient data will remove substantial prob-

lems. In addition, linking the data to a particular individual becomes harder when

such details (ID, medical history, name, and age) are discarded (Razzak et al., 2017).

2.5 Conclusion

The literature on machine learning and its relationship to medical imaging was re-

viewed. Review the technical and logistical challenges of medical imaging and the

mechanisms to overcome these obstacles. Lack of data and imbalance are among the

most common problems facing researchers. Deep Transfer learning is considered one of

the most effective solutions to these obstacles. Generative adversarial networks are the

most effective solution for the imbalanced dataset.
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Chapter 3

Methods

This chapter describes the project’s method. First, build and evaluate an experimental

framework using state-of-the-art DL methods. Full mammogram scans will serve as

2D inputs into an image localization; the CBIS-DDSM public breast Cancer Image

Dataset will be used to train the model. The model will output a predicted mask

for each mammogram. The mammogram images from the backend MOH database

will extract and separate to detect the tumor and classify it as malignant or benign.

Diagnosis, this dataset will be reprocessed to increase the size of this data, the size of

the image, and the label of the images, by data augmentation technique and openCV

to resize the images.

3.1 DataSet

The Learning algorithm for detecting breast cancer will be developed using two sec-

ondary datasets. The first dataset is an updated and standardized version of the DDSM

known as CBIS-DDSM. There are 2,620 digitized film mammography studies in the

DDSM. It includes instances with certified pathology data for benign and malignancy

conditions. The DDSM is a vital tool for creating and evaluating decision support

systems due to the size of the database and ground truth inspection. A trained mam-

mographer chose and curated a subset of the DDSM for the CBIS-DDSM collection.

After being decompressed, the images were changed to DICOM format. Additionally

included are updated ROI segmentation, bounding boxes, and pathologic diagnosis for

training data. Figure 3.1 shows sample mammogram images from CBIS-DDSM dataset.

Note that the images in this dataset are stored in the DICOM format, including the

patient information in the header of the mammogram images.
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Figure 3.1: CBIS-DDSM: Breast Cancer Image Dataset Samples

The second dataset is MOH dataset, consisting of 783 cases distributed over 2033 im-

ages. MOH collected and classified those images from 2017 until February 2022. The

diagnoses are based on the international standard framework for breast cancer diag-

noses, including mammogram diagnoses and ultrasound checks. The diagnosis results

are approved after biopsy tests occur. The cases are divided into 233 patients diag-

nosed without a tumor, 226 patients with a benign tumor raid two, 163 patients with

a benign tumor raid three, and 160 patients with a malignant tumor. The percentage

of normal images is 45.6%. The images that contain a malignant tumor are 15.7%. In

addition, Up to 38.3% of the images have benign tumors of the first and second types.

The dimension of each image is 4510*5844 pixels, and the total size of the dataset is

16 GB. Each image contains a scan of the breast, information about the patient, and

the diagnosis result.

9



Figure 3.2: MOH Breast Cancer Image Dataset samples

3.2 Data Prepossessing

To prepare the data for the model, we must first enhance its quality, make it simpler

for the model to learn characteristics and patterns from the best available data, and

concentrate on the area of interest. For instance, we need to prepare two data sets so

that we may enter them into the algorithm to train the model. We will remove the

border, normalize the photos, remove the artifact, flip the images horizontally, improve

the clash, and pad the square for the set of CBIS-DDSM images. In addition, we will

remove the border, flip the mask horizontally, and pad it to square for the CBIS-DDSM

mask set. Figure 3.3 depicts the area where the border needs to be removed, the artifact,

and the location where the image quality enhances the result when we preprocess the

images.
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Figure 3.3: CBIS-DDSM Mammogram Images Preprocessing

The MOH data set contains images in png format, so the personal information is dis-

played in the image, and we need to use the Optical character recognition (OCR) algo-

rithm to detect the sentence and numbers in the image to remove this extra information.

In addition, we will remove the border, artifact, horizontal flip, clash enhancement, and

the pad in the square. Finally, resize the images to 224*224, normalize, and standard-

ize all images to fast data access during the training and evaluation phase. Figure 3.4

shows the sample from the MOH data set, the information we should remove, and the

weakness we should improve, such as the artifact and the clahe.

Figure 3.4: MOH Mammogram Images Preprocessing

The calcification and mass categories are two important breast cancer categories in

CBIS-DDSM. The complete images, the cropped images, and the mask where the

cancer is identified are all included in each case. As a result, the folder structure must

be constructed based on the cancer category; Figure 3.5 illustrates the suggested layout
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for CBIS-DDSM. Folders containing the diagnosis information, patient information,

and the png image are located in the MOH data collection. The information needs

to be separated into two groups: normal and abnormal. The photos were divided

according to the diagnosis in each division. The suggested data format for the MOH

data collection is depicted in Figure 3.6.

Figure 3.5: CBIS-DDSM Proposed
Data Structuer

Figure 3.6: MOH Proposed Data
Structuer

3.3 Learning Process

The primary research objective of this article is to build a web application portal to

upload and classify medical images of breast cancer and host the web application in

the MOH. The proposed project workflow is produced in Figure 3.7 to achieve this

goal. We must train two models in two different data sets to achieve what we expected.

The primary function of model one is to classify the image as normal or abnormal.

The role of model two is to classify and detect the tumor in images. For training of

the models, the DL algorithm uses a set of breast cancer input images to identify the

image features that, when used, will result in the correct classification of the image,

that is, defining benign or malignant tumor as compared with the provided labels for

these input images. CNNs are created to determine the best filter weight values. CNNs

allows the network to discover patterns. Dropout is deployed with CNNs to prevent

over-fitting during the training of the models, and units are randomly dropped along

with their connections.
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Figure 3.7: Project Workflow

A web application portal will be created using Streamlit. Streamlit is an open-source

Python app framework that simplifies creating custom web apps for machine learning

and data science. It is compatible with major libraries like Sci-kit-learn, Keras, Py-

Torch, NumPy, Pandas, and Matplotlib. Streamlit’s ease of use and simple API make

it ideal for small data or prototyping larger apps. However, it has limited third-party

support, making it a newer framework with limited third-party support. A framework

will be made according to Figure 3.7. The first and second models on the portal will

be deployed.

Model one learning starts with binary classification (Normal / Abnormal) without

considering magnification. We Split the dataset into Train (80%) and Test (20%).

Then we use pre-trained models or transfer learning without fine-tuning as a baseline.

VGG19, ResNet101, and InceptionV3 for deep computer vision classification apply

to the training. We are exploring, fine-tuning, data augmentation, and comparing

with the baseline. If the result is unacceptable, we will use Generative Adversarial

Networks (GANs) to generate more data and then apply and reevaluate. Figure 3.8

show the high-level workflow for the model training. The MOH data set will train

model one for normal and abnormal detection.

Figure 3.8: Model One Learning Workflow
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The CBIS-DDSM data set will use to learn model two to classify and segment the

tumor in the abnormal images. The U-Net is a convolution neural network developed

for biomedical image segmentation and will be used to detect and segment cancer in

mammogram images. U-Net Has two main parts, the encoder block and the decoder

block. The encoder block learns features from mammogram images and classifies the

image as malignant or benign. The decoder block then presents these low-resolution

features discovered by the Encoder block back up to the full resolution of the original

input image, and the output is a full-resolution segmentation map. The Encoder block

is a sequence of convolutional layers and max-pooling layers. Vgg16 was selected for the

encoder block without the final dense layers. The Encoder learns from the first layers

of CNNs’ low-level features, while the decoder learns from the final layers of high-level

features; This allows the U-Net to map components extracted across all levels into the

final full-resolution, predicted segmentation mammogram images. Figure 3.9 shows the

U-Net algorithm’s architecture and the Encoder and decoder’s function.

Figure 3.9: U-Net Architecture (Wang et al., 2020)

The CBIS-DDSM data set is used to learn model two and extract information and

feature, as shown in Figure 3.10. The learning phase uses U-Net and Vgg16 as CNNs.

The output of the classification is malignant or benign and segments the tumor. The

learning mode used to learn the two models is detecting the normal and abnormal

cases and classifying the abnormal images as malignant and benign using MOH and

CBIS-DDSM to segment the tumor location.
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Figure 3.10: Model Two Learning Workflow

3.4 Model Evaluation

The most critical phase is evaluating the model learning to improve the performance

of the learning phase. In the project structure Figure 3.7, there are two models. Each

model has specific evaluation criteria to evaluate the learning performance and pre-

diction. Model one is a pure classification problem, and multi-literature is related.

Accuracy for model one will calculate as the sum of two accurate predictions (TP

+ TN) divided by the total number of data sets (P + N), which means accuracy =

(TP + TN)/(P + N). The disadvantage of accuracy is that it masks the issue of

class imbalance, so we will calculate the Recall as the number of accurate positive

predictions (TP) divided by the total number of positive (P), which means Recall =

(TP )/(TP + FN). Precision will calculate the number of correct positive predictions

(TP) divided by the total number of positive predictions (TP + FP), which means

Precision for model one = (TP )/(TP + FP ). F-score is a measure of the accuracy

of the test. It is calculated based on Precision and reminders. The final method to

evaluate model one is the ROC curve, a graph that visualizes the trade-off between

True Positive Rate and False Positive Rate.

F − score =
2 ∗ Precision ∗Recall

Precision ∗Recall
(3.1)

The evaluation criteria for model two is more complicated because the literature in

biomedical computer vision segmentation is a little, and we need accuracy in classifying

abnormality and predicting the tumors. Intersection over union (IoU) is a good metric

for measuring overlap between two bounding boxes or masks. If the prediction is

correct, then IoU = 1. Equation 3.2 displays IoU is the percentage overlap between the

predicted segmentation and the ground truth, divided by the union area between the

predicted and ground truth. We will use IoU to evaluate the accuracy of the prediction

of tumors in abnormal images.
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IoU =
AreaofP redictedmask ∩AreaofT ruthmask

AreaofP redictedmask ∪AreaofT ruthmask
(3.2)

3.5 Conclusions

The main conclusions for this chapter are that building a system to predict breast

cancer, whether it is normal or abnormal, and to determine the location of cancer in

case of infection requires training two models, one to classify patients as infected or

not infected, and the MOH data set will be used in this phase. The F-score will be

used to evaluate and increase the model one efficiency. Vgg16 algorithm and transfer

learning will also be used to build the model. The second model will classify infected

cases as benign or malignant cancer and determine the tumor’s location. The IoU will

also be used to evaluate model two and improve its efficiency, and the U-Nit algorithm

and transfer learning will be used to build model two. The CBIS-DDSM data set will

be used to build model two.

The CBIS-DDSM data set was used because the MOH dataset does not have a clas-

sification of cancer location or mask to detect the tumor location in the mammogram

images, and its size is insufficient. Building a segmentation model to classify and detect

breast cancer requires specifying the area of cancer on the mammogram images to make

this system
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Chapter 4

Implementation

This chapter looks at how the project was carried out. The mammogram images are

preprocessed in the data sets. U-Net and Vgg16 are used for image classification and

segmentation. Models are evaluated to improve performance. The web portal is built

to process all the classification and segmentation of mammogram images.

4.1 Dataset

Breast cancer mammograms and chest scan images from 2017 to 2022 are needed with

the doctor’s diagnosis for each case. The sample size we need to build CNNs to detect

and localize the abnormality in the image is 2000 images selected from 4518 patients

from the MOH dataset in addition to CBIS-DDSM. The first dataset is stored in the

backend system in the MOH. The research output will be implemented in MOH as a

plugin in the IBNSENA Health information system. The dataset we will process will

not contain identifying patient information. MOH data sets contain labels for each

image, which will be used to classify the mammogram into normal that contains BI-

RADSs one or abnormal cases that classify one of the class from 2 to 5, as shown in

Figure 4.2 and Table 4.1. The CBIS-DDSM dataset contains a mask for localizing the

tumor, which will be used to locate the tumor in the abnormal mammogram images,

as shown in Figure 4.1.

Figure 4.1: CBIS-DDSM Mask Figure 4.2: MOH Sample label
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# Date Age Mammogram Result BI-RADS Date of Birth

0 2022 58 Scattered fibro glandular breasts tissue.No de... 1 Mar 01.1964

1 2022 53 Scattered fibro glandular breasts tissue.No de... 1 Feb 21.1969

2 2022 54 Scattered fibro glandular breasts tissue.No de... 1 Dec 13.1968

3 2022 59 Scattered fibro glandular breasts tissue.No de... 1 Sep 14.1963

4 2022 76 Scattered fibro glandular breasts tissue.No de... 1 Apr 5.1946

Table 4.1: MOH DataSet Sample

Table 4.2 shows the description and class for Breast-Imaging Reporting and Data Sys-

tem (BI-RADS) from one to six, the selected cases from the MOH dataset contain

BI-RADS one to five.

# LN Result Description

0 0 Incomplete Additional imaging evaluation to prior mammograms is needed

1 I Negative Normal

2 II Benign Non-cancerous finding

3 III Probably benign finding Follow-up in a short time frame is suggested.

4 IV Suspicious abnormality Biopsy should be considered

5 V Highly suggestive of malignancy Appropriate action should be taken

6 VI Known biopsy-proven malignancy Appropriate action should be taken

Table 4.2: Mammogram Results Description

There are no null parameters in the MOH dataset. As shown in Table 4.3, there are

4518 cases in the MOH dataset.

# Column Non-Null Count Dtype

0 Number non-null 4518 int64

1 Date non-null 4518 int64

2 Name of Patient non-null 4518 object

3 Age non-null 4518 int64

4 Mammogram Result non-null 4518 object

5 BI-RADS non-null 4518 object

6 Date of Birth non-null 4518 object

Table 4.3: Parameters Description

Table 4.4 show the description of the statistics for the Age and Date parameters, as

shown in the table the minimum age in the dataset is 22 and the maximum is 93, both

of them are outlier.
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count mean std min 25% 50% 75% max

Date 4518.0 2018.636565 1.415249 2017.0 2018.00 2018.0 2020.00 2022.0

Age 4518.0 52.963701 9.295913 22.0 46.00 52.0 59.00 93.0

Table 4.4: Age & Date Description

The normal Age mean is 51.42, the benign age mean is 56.85, the benign callback age

mean is 51.67 =, and the malignant age mean is 53.06. and the advanced malignant age

mean is 57.5. there is no big difference between the means in different classes. Figure

4.3 shows the box plot for age in all classes. There is an outlier above 80 and under 28

years old. All the samples used are from Bethlehem governorate.

Figure 4.3: Box Plot for Age

patient id breast density left or right breast image view abnormality id abnormality type calc type calc distribution assessment pathology subtlety image file path cropped image file path ROI mask file path

0 P 00005 3 RIGHT CC 1 calcification AMORPHOUS CLUSTERED 3 MALIGNANT 3 Calc-Training Calc-Training Calc-Training

1 P 00005 3 RIGHT MLO 1 calcification AMORPHOUS CLUSTERED 3 MALIGNANT 3 Calc-Training Calc-Training Calc-Training

2 P 00007 4 LEFT CC 1 calcification PLEOMORPHIC LINEAR 4 BENIGN 4 Calc-Training Calc-Training Calc-Training

3 P 00007 4 LEFT MLO 1 calcification PLEOMORPHIC LINEAR 4 BENIGN 4 Calc-Training Calc-Training Calc-Training

4 P 00008 1 LEFT CC 1 calcification NaN REGIONAL 2 BENIGN 3 Calc-Training Calc-Training. Calc-Training

Table 4.5: CBIS-DDSM Data Sample

Table 4.5 describe the data function, the breast type, and the tumor class. This data

has two major categories: one for mass tumors and the second for calcification tumors.
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breast density abnormality id assessment subtlety

count 1546.000000 1546.000000 1546.000000 1546.000000

mean 2.663648 1.415265 3.258732 3.411384

std 0.937219 0.903571 1.229231 1.179754

min 1.000000 1.000000 0.000000 1.000000

25% 2.000000 1.000000 2.000000 3.000000

50% 3.000000 1.000000 4.000000 3.000000

75% 3.000000 1.000000 4.000000 4.000000

max 4.000000 7.000000 5.000000 5.000000

Table 4.6: CBIS-DDSM Stat Description

The statistical description shown in Table 4.6, breast density is the essential function

because it affects the image quality. The general information about the parameter null

count and the type of data related to these parameters are shown in Table 4.7. there

are three main types of data, int64, category, and object data type. Abnormality type

function to classify if the tumor is calcification or mass. Pathology to detect the type

of cancer, if it is malignant or benign.

Column Non-Null Count Dtype

0 patient id 1546 non-null object

1 breast density 1546 non-null int64

2 left or right breast 1546 non-null category

3 image view 1546 non-null category

4 abnormality id 1546 non-null int64

5 abnormality type 1546 non-null category

6 calc type 1546 non-null category

7 calc distribution 1546 non-null category

8 assessment 1546 non-null int64

9 pathology 1546 non-null category

10 subtlety 1546 non-null int64

11 image file path 1546 non-null object

12 cropped image file path 1546 non-null object

13 ROI mask file path 1546 non-null object

Table 4.7: CBIS-DDSM Parameters
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4.2 Data Prepossessing

MOH dataset contains images in jpg format that will be less flexible, and it takes

more time to improve the images. From Figur 4.3, we note that the images include

personal information; there is Clahe in the images, and the artifact must be removed.

In addition, there is a text above the image that must be removed.

Figure 4.4: Raw Data for MOH Dataset

First of all, to preprocess the images, we crop the border from the two sides 1% and

from up and bottom of the images 4%. Normalize the images to modify the data

of each channel/tensor so that the mean is zero and the standard deviation is one.

MinMax normalization using equation 4.1. Removing artifacts and enhancing Clahe is

one of the most critical phases in image enhancement. The Sortconturbyarea function

detects the most significant area and removes the other. The Sortconturbyarea function

computes the bounding rectangle for each contour and outputs the sorted contours.

xLargestBlobs function finds the largest contours. The applyMask function applies the

mask that detects from xLargestBlobs to the image. The White area is kept, and the

black will remove. Finally, the checkLRFlip function will check the direction of the

image horizontally, if it’s right or left, and make it right.

X(norm)i =
Xi −X(min)

X(max)−X(min)
(4.1)

Figure 4.5: Image Preprocessing
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Figure 4.4 shows the workflow procedure of image preprocessing; we note five major

editing phases. The selected mask is most vital because it selects the area of interest

and removes unwanted things from the image.

Figure 4.6: Image Preprocessing

We notice from Figure 4.5 that the selection of the region or applied mask did not

include the region that we want to study, which means the selected mask contains the

region of interest in addition to the bounding box that includes text, and this is due to

the overlap of this region. so text remover program build using keras ocr to remove the

text from the images. After removing the text, some images need manual improvement,

so the data set is split into two data sets. The first data set is ready to learn the model

and includes 898 images for abnormal and 766 for normal Figure 4.6; the other needs

manual manipulation to be ready and includes 201 images for abnormal and 181 for

normal cases Figure 4.7.

Figure 4.7: DataSet One Figure 4.8: DatSet Two

After manual editing with the Photoshop application for data set two, we build Data

Set Three, which includes 898 images for abnormal and 1421 for normal cases. The

split folder method divides dataset one into three folders: test folders, which contain

75% of images, and the val folder, which includes 5% of cases. Moreover, the test folder
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contains 15% of cases, and the same task was done for dataset three.

4.3 Learning Process

The learning process is based on the quality of the data. More than one data set

and multiple learning models have been created. The first data set contains all the

images, but some must be processed. The first model was built, which consisted of

Two Convolution layers, one max pol layer, and two fully connected layers. We use

Cross Entropy Loss as our loss function. We use Stochastic Gradient Descent (SGD)

with a learning rate of 0.001 for our gradient descent algorithm or Optimizer. We set

the momentum to 0.9. Equations 4.2 and 4.3 show how the gradient is calculated.

Model one learn from the unspilt data set, dataset one and three. Each learning phase

is a separate experiment.

chx(t) = StepSize ∗ f ′(x(t− 1)) + mom ∗ chx(t− 1) (4.2)

x(t) = x(t− 1)–chx(t) (4.3)

The model one network structure is as follows:

• (conv1): Conv2d(3, 32, kernel size=(3, 3), stride=(1, 1))

• (conv1): Conv2d(3, 32, kernel size=(3, 3), stride=(1, 1))

• (conv2): Conv2d(32, 64, kernel size=(3, 3), stride=(1, 1))

• (pool): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1,

ceil mode=False)

• (fc1): Linear(in features=1000000, out features=128, bias=True)

• (fc2): Linear(in features=128, out features=4, bias=True)

Transfer learning used in building models used ResNet-18, ResNet-50, Vgg16, and

inception v3 pre-trained model. ResNet-18 is a convolutional neural network that in-

cludes 18 layers deep, the pre-trained version of the network trained on more than a

million images from the ImageNet database. The pre-trained network can classify im-

ages into 1000 object categories, such as keyboard, pencil, and many animals. ResNet-

50 is a convolutional neural network that is 50 layers deep. The pre-trained version

of the neural network was trained on more than a million images from the ImageNet

database. Vgg16 is a CNNs that is 16 layers deep. Inception-v3 is a pre-trained CNNs
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model that is 48 layers deep. All pre-trained models were downloaded, and the last

fully connected layers were edited to classify two outputs. In the learning phase, we

update the weight in the last fully connected layer. In another way, we update the

weight for all by turning off the requires grad that will not compute backward.

The portal was built using Streamlit. The first and second models were deployed on

the portal. We were creating visually appealing apps without front-end development.

Streamlit releases us from focusing on any front-end framework or coding in Hyper

Text Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript.

4.4 Model Evaluation

Model learning evaluation is one of the most critical stages in building AI models to

build a model capable of predicting with high accuracy and without overfitting. Cross

entropy loss and SGD were used to evaluate the ML model through the learning phase

by applying the two techniques in the test data baches. Several tools, including cross-

entropy loss, measure ML performance of a classification model. In cross-entropy, the

loss is expressed as a number ranging from 0 to c, where c is the number of classes. The

class is 0 or 1 in our model, with 0 being a perfect model. The goal is generally to get

the model as close to 0 as possible. Cross entropy loss measures the difference between

the discovered probability distribution of a machine learning classification model and

the predicted distribution. The mathematics formula that calculated the loss or error

displayed in Equation 4.4 where y is normal class, 1− y is abnormal class, and p is the

probability of normal class.

l = −(y ∗ log(p) + (1− y) ∗ log(1− p)) (4.4)

Gradient Descent is an optimization method that seeks the optimal value for an ob-

jective function. Finding the model parameters that produce the highest levels of

accuracy on training and test datasets is the main objective of gradient descent. A

variation of the Gradient Descent approach used to enhance machine learning models

is called SGD. It tackles the classic Gradient Descent methods’ computational ineffi-

ciencies while working with massive datasets in machine learning applications. In SGD,

the gradient is computed, and the model parameters are updated using only a random

training example (or a small batch) rather than the entire dataset for each iteration.

4.5 Conclusions

The most important conclusion in this finding is the success of extracting a dataset of

images for breast cancer mammograms that can build an intelligent model to predict
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cases normal or abnormal for patients. The extracted dataset can be relied upon as a

classifier but not to build a model that can detect and segment the tumor’s location in

the breast. This data needs more work to identify the tumor in each image, and then

it can build a machine-learning model to predict and segment the tumor’s location.

CBIS-DDSM is a public dataset in which a learning model can be built to detect the

tumor’s location. However, due to time constraints and because of the consumption of

most of the time in collecting and improving the Ministry of Health dataset and many

studies on this public dataset, it was sufficient to study the dataset of the Ministry of

Health. Also, to build a good learning model, more than one part of the dataset in the

Ministry of Health was adopted, and more than one learning method was adopted in

building the model.
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Chapter 5

Experiments & Results

This chapter assesses the project as a whole and presents the test findings. Six experi-

ments were conducted to achieve the best results and build the most accurate model.

This chapter will review each experiment, and its effects will be discussed.

The model one was built from the ground up in the first experiment. The model

consists of two Conv layers, two Max layers, and two fully connected layers. The

unseparated dataset has been processed. Figure 5.1 shows the data set sample used in

the experiment, as we notice that some of the images contain borders that still need

to be processed. Table 5.1 shows that the validation loss in this experiment is 1.33,

and the validation accuracy is 33.77 %. This result is unacceptable because of the

model structure or the dataset used in the learning. To examine the reason for this

result, we separated the dataset used in this experiment into two datasets, the first

containing well-processed images and the second containing the dataset that needed

manual processing.

Figure 5.1: Unsplit Dataset
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Because the results from the first experiment were not accepted, the second experiment

was conducted with the same model structure. The first database has been adopted,

which contains well-processed images. Figure 5.2 shows the sample images from dataset

one. The model accuracy in the training phase is 53.9%, and the accuracy in the test

phase is 53.6 %. The training loss is 0.68, and the test loss is 0.7. This result shows

that it is an improvement but needs revision. The reason is that when we split the

data, we removed the images containing borders but decreased the number of images in

the dataset. So we will manually reprocess the unclear image and added to the dataset.

Figure 5.2: Dataset One

The third experiment was conducted to enhance the model’s performance and prepare

the dataset in which the images were processed automatically and manually. This group

contains 1065 normal and 673 abnormal mammogram images in the training folder.

Figure 5.3 shows the sample of dataset three, and we note that some of the images are

cropped. The validation accuracy in this experiment is 74.46 %. The validation loss is

0.474, which is an acceptable result, and we note the excellent improvement in model

performance after enhancing the dataset.

Figure 5.3: Dataset Three

The following three experiments are to improve the model’s structure and performance.
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Transfer learning will be used in the model creation process. Four models have been

used: Resnet18, Vgg16, and Inception v3, in addition to Resnet50. The last layer

in each model will be modified, and the output will change from 1000 classes to two

classes, normal and abnormal. The weights update was done in two ways, the first

method was to update the weights of the last layer, and the second was to update the

weights on all layers. The third database is used to learn the model. As we can see

from the results in Table 5.1, the best model is Vgg16 with a validation loss of 0.4271

and validation accuracy of 83.26%.

Models Train Loss Test Loss Train Acc Test Acc Dataset

Model one 1.36 1.33 32.02 33.77 unsplit dataset

Model one 0.68 0.7 53.9 53.6 Dataset 1

Model one 0.4854 0.474 74.51 74.46 Dataset 3

Resnet18 0.2605 0.3937 89.41 80.69 Dataset 3

Resnet18 no grad 0.5027 0.4658 71.69 76.61 Dataset 3

Vgg16 0.1724 0.4271 93.96 83.26 Dataset 3

Inception v3 0.2682 0.4085 0.8746 0.8197 Dataset 3

Inception v3 no grad 0.5130 0.4778 7261 7425 Dataset 3

Resnet50 0.1024 0.5552 96.84 75.97 Dataset 3

Resnet50 no grad 0.4816 0.4879 74.11 72.53 Dataset 3

Table 5.1: Models Training Result

Table 5.2 shows the evaluation result for the test and validation data set for Vgg16

model. We also note that the accuracy of the validation data is less than the accuracy

of the test data.

Func Val Data Test Data AV

True Negative 27 150

False Positive 17 31

False Negative 8 54

True Positive 63 231

Dataset Accuracy(mean) 78.26 % 81.75 % 80.005 %

Sensitivity 88.73 % 81.05 % 84.89 %

Specificity 61.36 % 82.87 % 72.115 %

Precision 78.75 % 88.16 % 83.455 %

NPV 77.14 % 73.5 % 75.32 %

F1 83.44 % 84.46 % 83.95 %

Table 5.2: Confusion Matrix for Vgg16 Model
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Figures 5.4 and 5.5 show the accuracy and loss graph during the training phase. The

chart shows that the model overfits after eight epochs, so the best parameters weight

will be in epoch seven.

Figure 5.4: Vgg Accuracy Graph Figure 5.5: Vgg Loss Graph

Table 5.3 shows the evaluation result for the test and validation data set for the

Resnet18 model. We note that the NPV is not high according to other values be-

cause the dataset is not balanced, and the normal class is more than 60% of the data

set.

Func Val Data Test Data AV

TN 29 148

FP 15 33

FN 16 56

TP 55 229

Testset Accuracy 73.04 80.9 76.97

Sensitivity 77.46 80.35 78.905

Specificity 65.9 81.76 73.83

Precision 78.57 87.4 82.985

NPV 64.44 72.54 68.49

F1 78.01 83.7 80.855

Table 5.3: Confusion Matrix for ResNet Model

For more deep evaluation, the MIAS public data set was selected. MIAS contains

207 normal mammogram images and 155 abnormal mammogram images. Table 5.4

show the head of information for the selected dataset. The mammogram images were

converted from .pgm to jpeg. The overall preprocess phases are conducted on all the

datasets. The data set is split into Normal and abnormal folders.
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REFNUM BG CLASS SEVERITY X Y RADIUS

mdb001 G CIRC B 535 425 197
mdb002 G CIRC B 522 280 69
mdb003 D NORM NaN NaN NaN NaN
mdb004 D NORM NaN NaN NaN NaN
mdb005 F CIRC B 477 133 30

Table 5.4: head of the information for MIAS

Figure 5.6 shows the Mias dataset sample and the related class for each mammogram

image in the text.info file. The Mias dataset is just used for evaluation, which means

the model didn’t train for this dataset.

Figure 5.6: Mias DataSet Sample

Table 5.5 shows the confusion matrix result for the VGG16 model on the MIAS dataset.

The overall result decreasing. the Testset Accuracy is 57.14%, the Precision is 69.71

%, and the F1 score is 63.87%.
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Func Mias Data

TN 62

FP 53

FN 85

TP 122

Testset Accuracy 57.14

Sensitivity 58.93

Specificity 53.91

Precision 69.71

NPV 42.17

F1 63.87

Table 5.5: Confusion Matrix for MIAS Dataset

5.1 Conclusions

We conclude from this chapter that data quality, classification, tabulation, and suit-

ability in terms of quantity and quality is the most critical factor in raising the model’s

efficiency. Building the model can start from scratch or using a pre-trained model. This

chapter evaluates the overall project and provides the results of tests. Six experiments

were conducted to reach the best results and build the most accurate model. Model

one was built from the ground up with two Conv layers, two Max layers, and two fully

connected layers. The validation loss was 1.33, and the accuracy was 33.77 %. The sec-

ond experiment was conducted with the same model structure, and the model accuracy

was 53.9 % and 53.6 %. The training loss was 0.68, and the test loss was 0.7. The third

experiment was conducted to improve the model’s performance and prepare a dataset

with 1065 normal and 565 abnormal mammogram images. The validation accuracy was

74.46 %, and the validation loss was 0.474. The last three experiments used transfer

learning and four models to improve the model’s structure and performance. The best

model was Vgg16, with a validation loss of 0.4271 and a validation accuracy of 83.26%.

In this project, we notice a massive improvement in the model performance when we

enhance data equality. The F1 Score decreases to 63.87% when the MIAS dataset is

used.
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Chapter 6

Conclusion

This chapter summarises the main outcomes and conclusions from this work.

6.1 Conclusions

The main conclusion of this project is that the essential element in building artificial

intelligence models is the data collected and the quality of this data in terms of quantity

and quality. The database of mammograms in the Ministry of Health is rich in quantity,

as it contains data from 2009 until now, but it needs much work to classify, classify,

code, and locate tumors. One of the most critical problems the database needs is more

stability in classification and storage. The years between 2017 and 2022 were selected,

and a database was built from them. The images were processed automatically and

manually, and a database containing 2236 mammograms was obtained. It is possible

to work on increasing the effectiveness of this data by reviewing it with a specialist in

tumors and reclassifying and tabulating it based on the expert’s opinion.

The second main output of this project is the ML model that can predict cases of

breast cancer patients with or without an infection with an accuracy of 83%, which

is a good percentage but needs improvement. In addition to deploying this model

on a web application program to help in the work of the MOH, it can also save new

mammogram images and classification to help improve the model’s accuracy in the

future, as the more data, the accuracy will improve for the model.

6.2 Future Work

Many tasks can be done in the future to improve the system, and the most important

tasks can be summarized as follows.
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• The portal created by Streamlit can be used to collect data, improve its quality,

and for initial diagnosis. However, the program must be updated using Django or

Flask, and an advanced database should be created to improve system speed and

deal with a high demand for diagnosis in the future. In addition to linking the

ultrasound, the result of the biopsy, MRI, and the CT scan with the system, the

results of these tests are what confirm the presence of the tumor, its size, and its

type, and this raises the efficiency of the data, especially the imaging data, and

can enhance the results of the diagnosis. Figure 6.1 show the BCD future design.

• It is improving data quality and increasing its number by collecting additional

data from private and public centers inside Palestine.

• Using GANs technology to increase the volume of data.

• Using public data to create a model for locating breast cancer.

• Connecting the system with the biopsy result and the ultrasound machine and

storing the results in a unified database to improve the system’s efficiency and

accuracy of the model prediction.

Figure 6.1: Future Design

Figure 6.1 shows the proposed future breast cancer detection BCD system design. We

also note from the design that there is application interface was created to be the
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interface to communicate with databases of medical images from mammograms, CT

scans, and MRI, in addition to the ultrasound. The figure shows the BCD and Ibn Sina

Medical Information System integration. The proposed system comprises nine parts,

including mammogram analysis and segmentation AI model. The BCD starts the

process by getting the patient’s profile, getting the mammogram images, analyzing the

case, then putting the patient in for a biopsy if the result is abnormal, and providing

Health Information System (HIS) with the final result. In this design, we will get

enhanced and improved breast cancer detection services and high-quality images to

improve the BCD AI model accuracy.
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Ribeiro, E., Uhl, A., Wimmer, G., & Häfner, M. (2016). Exploring deep learning and

transfer learning for colonic polyp classification. Computational and mathemat-

ical methods in medicine, 2016.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale

image recognition. International Conference on Learning Representations.

Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2015). A dataset for breast

cancer histopathological image classification. Ieee transactions on biomedical

engineering, 63 (7), 1455–1462.

Stone, P., Brooks, R., Brynjolfsson, E., & al. et, e. (2016). Artificial intelligence and

life in 2030: The one hundred year study on artificial intelligence. https://apo.

org.au/node/210721

Suckling, Parker, Dance, Astley, Hutt, Boggis, & Ricketts. (2015). Mammographic im-

age analysis society (mias) database v1.21 [dataset]. https://www.repository.

cam.ac.uk/handle/1810/250394

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

houcke, V., & Rabinovich, A. (2015). Going deeper with convolutions. 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9.

https://doi.org/10.1109/CVPR.2015.7298594

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the

inception architecture for computer vision. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

Wang, F., Eljarrat, A., Müller, J., Henninen, T. R., Erni, R., & Koch, C. T. (2020).

Multi-resolution convolutional neural networks for inverse problems. Scientific

Reports, 10 (1), 5730. https://doi.org/10.1038/s41598-020-62484-z

37

www.moh.ps
https://doi.org/10.3233/xst-200715
https://doi.org/10.3233/xst-200715
https://apo.org.au/node/210721
https://apo.org.au/node/210721
https://www.repository.cam.ac.uk/handle/1810/250394
https://www.repository.cam.ac.uk/handle/1810/250394
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1038/s41598-020-62484-z


Zhu, Y., Chen, Y., Lu, Z., Pan, S., Xue, G.-R., Yu, Y., & Yang, Q. (2011). Heterogeneous

transfer learning for image classification. Proceedings of the AAAI conference

on artificial intelligence, 25 (1), 1304–1309.

38



Appendix A

BCD Functional &

Non-Functional Requirements

A.1 Functional Requirements

This specification was prepared to cover the various services BCD required based on

the functions’ modality. The following table summarizes and describes the features of

BCD:

Functional Re-

quirement

Desc.

1 BCD Public Por-

tal

Design and implement a launching page from within

the MOH public portal that allows citizens/organi-

zations to register as users. Create new cases from

the internet or follow the active cases.

39



2 Citizen Registra-

tion Process

When accessing the public portal, the citizen will

be presented with three methods of logging into the

system:

Log-In Screen: where a previous user can use his

user name and password to login into the system.

New User Screen: this screen will allow a new user

to enter the required information to login into the

system.

Anonymous user where no user-specific information

will be recorded. The Anonymous user can upload

and analyze the mammogram images.

3 New Schedule re-

quest Process

For each type of request, the system will display a

checklist of mandatory documents that need to be

attached to the request and will allow the user to

attach Mammogram images and an electronic copy

of the documents.

4 In-Progress Case

Process

Once the Staff member has marked a request as com-

plete and ready for processing and based on the pre-

configured options, the request will be assigned to

the staff member responsible for further processing.

This assignment could be manual, or it could be done

via configured rule.

5 Search The solution must have the capability to allow MOH

staff to search on keywords such as Citizen ID, Re-

quest Number, date/time, case request status, re-

quest type, telephone number, etc., and retrieve the

request records.
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6 Reporting

The solution should provide a dashboard (Graphical

and textual) that contains defined Key Performance

Indicators that would appear on the home pages of

the supervisors and managers in the MOH. The sug-

gested KPIs are as follows:

Number of Received Request during a period (de-

fault to monthly)

Percentage of closed Request by status.

Distribution of requests by type

7 Closed Request The system shall not allow any modifications (to the

reports, responses, comments)

8 Form Builder The system should have a form builder to allow the

building of forms in a visual style. The fields in the

form designer should include text boxes (single and

multi-line), checkboxes, drop downs, date pickers,

and file upload fields.

9 User Manage-

ment

The solution shall allow the administrator to define

new users. At a minimum, the definition of new

users will have the following fields:

User name

First and Last Name

E-Mail

Password field

Security Challenge “hint” question and answer
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10 Security control The solution shall allow the administrator to de-

fine roles with specific privileges and permissions.

In addition, to allowing the administrator to create

groups of users and attach a group to a role..

11 Storage Control The solution shall have a screen that allows the ad-

ministrator to allow attachments, their storage loca-

tion, and the maximum size per attachment.

12 Case Manage-

ment

The solution shall be able to split a request into

sub-requests, assign them to different departments,

and monitor their progress as separate or related re-

quests.

13 Image classifica-

tion

The solution shall have the ability to classify the

image as normal or abnormal

14 Image segmenta-

tion

The solution shall be able to classify the image as

benign or malignant and localize the tumor with a

highlight color in the image.

15 Workflow

Builder

The solution shall have a business process designer

that allows business analysts and SMEs to create

workflow maps using a web-based process designer

that will map the flow of a request based on the

nature of the request, authority matrix, and orga-

nization structure. The workflow maps created will

allow for pre and post-actions.

16 Audit Trail The solution should have audit trail logs that con-

tain the user’s login/logout date/time by user ID,

terminal (or IP address),

Table A.1: BCD Functional Requirements
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A.2 Non-Functional Requirements

Category Feature

Ease of Use

The BCD will support multiple languages for both user inter-

face and content. The BCD will support Arabic data entry

and the Arabic user interface.

Messages and notifications will be provided in various lan-

guages (Arabic, English)

The BCD will support English data entry and an English

user interface.

The BCD will support the ability to determine the language

of the user interface for each user.

The BCD will support entering lookup descriptions in Arabic

and English.

The BCD will present various graphical user interface com-

ponents, including text items, drop-down lists, hierarchical

trees, and buttons.

The BCD Will include help with the classification scheme,

including, at a minimum, easy access to the descriptive meta-

data for classes, files, sub-files, and volumes.

The BCD Will include a thesaurus to assist users in selecting

terms for keywords, descriptions, etc.

All error messages produced by the BCD will be meaningful

so that users can decide how to correct the error or cancel the

process. Ideally, each error message will be accompanied by

an explanatory text and an indication of the action(s) that

the user can take in response to the error
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The BCD user interface will be suitable for users with the

widest range of needs and abilities; that is, designed ac-

cording to suitable accessibility standards and guidelines and

compatible with common specialized accessibility software

The BCD will be easy to use and intuitive throughout.

The BCD will be accessible through a Web Based graphical

user interface.

The BCD Will not require installing any software or config-

uration on the client side.

The BCD will be able to display simultaneously multiple

records and aggregations

The BCD will allow users to customize aspects of the graph-

ical user interface. Customization will include but need not

be limited to, the following changes:

menu and toolbar contents;

screen layout;

use of function keys;

on-screen colors, fonts, and font sizes;

Audible alerts.

The BCD will allow persistent defaults for data entry where

desirable. These defaults should include:

user-definable values;

a fixed default value;

values same as the previous item;
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values derived from context, e.g., today’s date, file reference,

user identifier, as appropriate.

The BCD Will be tightly integrated with the organization’s

e-mail system to allow users to send records and aggregations

electronically without leaving the BCD.

The BCD Will indicate whether an e-mail message has an

attachment.

The BCD Will allow a user with access to a request/appli-

cation to route it to another specified user with the required

roles and privileges.

Performance and Scalabil-

ity

The BCD will be able to return the results of a simple search

(the hit list) within <3 seconds>and of a complex search

(combining four terms) within <10 seconds>regardless of the

storage capacity or a number of files and records on the sys-

tem.

The BCD will be able to retrieve and display within <5 sec-

onds>the first page of cases which has been accessed within

the previous <2>months, regardless of storage capacity or a

number of files/records on the system.

The BCD will be able to retrieve and display within <20

seconds>the malignant cases which have not been updated

within the previous <12>months, regardless of storage ca-

pacity or a number of records on the system.

It will be possible to expand the BCD, in a controlled manner,

to meet MOH growth up to at least <one hundred>users

while providing continuity of service.
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The BCD will be scalable and must be able to be used in

small or large sizes, with varying numbers of differently-sized

units and across different geographical locations

System Availability

The BCD can be configured to be available to users: from 24

by 7

Planned downtime for the BCD will not exceed <6 hours>per

<rolling 0ne year period>.

Unplanned downtime for the BCD will not exceed <6

hours>per <rolling one year period>.

System Flexibility

The BCD will be highly customized and should be easily

configurable

The BCD will include some ‘Report Generator’ and Query

Builder so that trained users or system administrators can

generate ad-hoc reports and a standard list of reports gener-

ated using a standard report writer such as Crystal Reports.

The BCD will include a facility for system administrators to

design new forms or templates.

The BCD will include a facility to export reports into Mi-

crosoft Office (Word, Excel, etc.), HTML, XML, and PDF.

The BCD provides a facility for Arabic/English reporting

capabilities

Table A.2: BCD Non-Functional Requirements
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Appendix B

Project Management

Task Name Duration Start Finish

Summary #1 34 days Thu

9/8/22

Tue

10/25/22

Meeting with Dr. Hassan to confirm the thesis topics and

approve the outline to start the project.

2 days Thu

9/8/22

Fri

9/9/22

Literature review. 30 days Mon

9/12/22

Fri

10/21/22

Summary #1 Complete the CH 1 and CH 2 2 days Mon

10/24/22

Tue

10/25/22

Summary #2 38 days Wed

10/26/22

Fri

12/16/22

Meet with the Director General of Information Technology at

the Ministry of Health to challenge the requirements needed

to provide patient data.

3 days Wed

10/26/22

Fri

10/28/22

Data collection from the Ministry of Health, Bethlehem

branch.

14 days Mon

10/31/22

Thu

11/17/22

Data analysis. 14 days Fri

11/18/22

Wed

12/7/22

Summary #2 Complete CH 3 Methods presented, justified, 7 days Thu

12/8/22

Fri

12/16/22

Summary #3 147 days Mon

12/12/22

Tue

7/4/23

Mammogram images preprocessing 30 days Tue

12/13/22

Mon

1/23/23
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Technical implementation of the experimental framework for

BC detection.

30 days Tue

1/24/23

Mon

3/6/23

Experiments and results will be presented, discussed, and

interpreted.

20 days Thu

3/9/23

Wed

4/5/23

Final findings, conclusions, and future direction 14 days Thu

4/6/23

Tue

4/25/23

Tuning, enhancement, and finalizing 50 days Wed

4/26/23

Tue

7/4/23

Summary #3 Thesis Complete 1 day Tue

7/4/23

Tue

7/4/23

Table B.1: Project Tasks
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Appendix C

Breast Cancer Detection App

Figure C.1: BCD APP 1
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Figure C.2: BCD APP 2
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Figure C.3: BCD APP 3
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Appendix D

Presentation Slides
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Appendix E

Outputs of Experiment One

(Model One)

Epoch 1 of 10

Training

20it [12:12, 36.61s/it]

Validating

10it [01:31, 9.16s/it]

Train Loss: 1.3840, Train Acc: 28.47

Val Loss: 1.3818, Val Acc: 29.22

Epoch 2 of 10

Training

20it [12:15, 36.78s/it]

Validating

10it [01:31, 9.18s/it]

Train Loss: 1.3762, Train Acc: 30.56

Val Loss: 1.3593, Val Acc: 29.87

Epoch 3 of 10

Training
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20it [12:15, 36.76s/it]

Validating

10it [01:31, 9.15s/it]

Train Loss: 1.3698, Train Acc: 32.26

Val Loss: 1.3720, Val Acc: 29.22

Epoch 4 of 10

Training

20it [12:14, 36.70s/it]

Validating

10it [01:31, 9.16s/it]

Train Loss: 1.3676, Train Acc: 31.85

Val Loss: 1.3518, Val Acc: 38.96

Epoch 5 of 10

Training

20it [12:13, 36.68s/it]

Validating

10it [01:31, 9.18s/it]

Train Loss: 1.3709, Train Acc: 29.11

Val Loss: 1.3582, Val Acc: 38.96

Epoch 6 of 10

Training

20it [12:17, 36.88s/it]

Validating

10it [01:33, 9.31s/it]

Train Loss: 1.3715, Train Acc: 29.27

Val Loss: 1.3527, Val Acc: 29.22
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Epoch 7 of 10

Training

20it [12:15, 36.79s/it]

Validating

10it [01:32, 9.24s/it]

Train Loss: 1.3639, Train Acc: 32.66

Val Loss: 1.3443, Val Acc: 40.91

Epoch 8 of 10

Training

20it [12:18, 36.93s/it]

Validating

10it [01:32, 9.20s/it]

Train Loss: 1.3624, Train Acc: 32.98

Val Loss: 1.3456, Val Acc: 32.47

Epoch 9 of 10

Training

20it [12:15, 36.78s/it]

Validating

10it [01:31, 9.16s/it]

Train Loss: 1.3627, Train Acc: 32.50

Val Loss: 1.3471, Val Acc: 35.71

Epoch 10 of 10

Training

20it [12:17, 36.86s/it]

Validating

10it [01:32, 9.23s/it]
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Train Loss: 1.3604, Train Acc: 32.02

Val Loss: 1.3382, Val Acc: 33.77

Training time: 137.926 minutes

Saving loss and accuracy plots...
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Appendix F

Outputs of Experiment Two

(Model Two)

Epoch 1 of 10

Training

78it [15:05, 11.61s/it]

Validating

27

Train Loss: 0.6925, Train Acc: 53.49

Val Loss: 0.6941, Val Acc: 53.66

Epoch 2 of 10

Training

78it [14:59, 11.53s/it]

Validating

27

Train Loss: 0.6905, Train Acc: 53.97

Val Loss: 0.6957, Val Acc: 53.66

Epoch 3 of 10

Training
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78it [14:39, 11.27s/it]

Validating

27

Train Loss: 0.6901, Train Acc: 53.97

Val Loss: 0.6967, Val Acc: 53.66

Epoch 4 of 10

Training

78it [14:48, 11.39s/it]

Validating

27

Train Loss: 0.6902, Train Acc: 53.97

Val Loss: 0.6958, Val Acc: 53.66

Epoch 5 of 10

Training

78it [14:55, 11.49s/it]

Validating

27

Train Loss: 0.6900, Train Acc: 53.97

Val Loss: 0.6981, Val Acc: 53.66

Epoch 6 of 10

Training

78it [15:42, 12.08s/it]

Validating

27

Train Loss: 0.6899, Train Acc: 53.97

Val Loss: 0.6963, Val Acc: 53.66
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Epoch 7 of 10

Training

78it [16:00, 12.31s/it]

Validating

27

Train Loss: 0.6894, Train Acc: 53.97

Val Loss: 0.7036, Val Acc: 53.66

Epoch 8 of 10

Training

78it [16:17, 12.53s/it]

Validating

27

Train Loss: 0.6905, Train Acc: 53.97

Val Loss: 0.6967, Val Acc: 53.66

Epoch 9 of 10

Training

78it [15:52, 12.21s/it]

Validating

27

Train Loss: 0.6896, Train Acc: 53.97

Val Loss: 0.6958, Val Acc: 53.66

Epoch 10 of 10

Training

78it [15:34, 11.97s/it]

Validating

27
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Train Loss: 0.6887, Train Acc: 53.97

Val Loss: 0.7023, Val Acc: 53.66

Training time: 163.130 minutes

Saving loss and accuracy plots...
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Appendix G

Outputs of Experiment Three

(Model Three)

Starting Epoch: 1...

Epoch: 1, Mini-Batches Completed: 10, Loss: 0.121, Test Accuracy = 61.739

Epoch: 1, Mini-Batches Completed: 20, Loss: 0.110, Test Accuracy = 72.174

Epoch: 1, Mini-Batches Completed: 30, Loss: 0.108, Test Accuracy = 71.304

Epoch: 1, Mini-Batches Completed: 40, Loss: 0.104, Test Accuracy = 71.304

Epoch: 1, Mini-Batches Completed: 50, Loss: 0.106, Test Accuracy = 68.696

Starting Epoch: 2...

Epoch: 2, Mini-Batches Completed: 10, Loss: 0.105, Test Accuracy = 69.565

Epoch: 2, Mini-Batches Completed: 20, Loss: 0.104, Test Accuracy = 69.565

Epoch: 2, Mini-Batches Completed: 30, Loss: 0.103, Test Accuracy = 69.565

Epoch: 2, Mini-Batches Completed: 40, Loss: 0.100, Test Accuracy = 64.348

Epoch: 2, Mini-Batches Completed: 50, Loss: 0.094, Test Accuracy = 72.174

Starting Epoch: 3...

Epoch: 3, Mini-Batches Completed: 10, Loss: 0.104, Test Accuracy = 73.043

Epoch: 3, Mini-Batches Completed: 20, Loss: 0.108, Test Accuracy = 62.609

Epoch: 3, Mini-Batches Completed: 30, Loss: 0.098, Test Accuracy = 73.043
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Epoch: 3, Mini-Batches Completed: 40, Loss: 0.107, Test Accuracy = 61.739

Epoch: 3, Mini-Batches Completed: 50, Loss: 0.097, Test Accuracy = 73.913

Starting Epoch: 4...

Epoch: 4, Mini-Batches Completed: 10, Loss: 0.099, Test Accuracy = 65.217

Epoch: 4, Mini-Batches Completed: 20, Loss: 0.101, Test Accuracy = 71.304

Epoch: 4, Mini-Batches Completed: 30, Loss: 0.098, Test Accuracy = 73.043

Epoch: 4, Mini-Batches Completed: 40, Loss: 0.100, Test Accuracy = 66.087

Epoch: 4, Mini-Batches Completed: 50, Loss: 0.097, Test Accuracy = 73.043

Starting Epoch: 5...

Epoch: 5, Mini-Batches Completed: 10, Loss: 0.099, Test Accuracy = 69.565

Epoch: 5, Mini-Batches Completed: 20, Loss: 0.101, Test Accuracy = 74.783

Epoch: 5, Mini-Batches Completed: 30, Loss: 0.093, Test Accuracy = 71.304

Epoch: 5, Mini-Batches Completed: 40, Loss: 0.099, Test Accuracy = 73.043

Epoch: 5, Mini-Batches Completed: 50, Loss: 0.097, Test Accuracy = 74.783

Starting Epoch: 6...

Epoch: 6, Mini-Batches Completed: 10, Loss: 0.096, Test Accuracy = 73.043

Epoch: 6, Mini-Batches Completed: 20, Loss: 0.097, Test Accuracy = 75.652

Epoch: 6, Mini-Batches Completed: 30, Loss: 0.094, Test Accuracy = 74.783

Epoch: 6, Mini-Batches Completed: 40, Loss: 0.099, Test Accuracy = 71.304

Epoch: 6, Mini-Batches Completed: 50, Loss: 0.095, Test Accuracy = 77.391

Starting Epoch: 7...

Epoch: 7, Mini-Batches Completed: 10, Loss: 0.101, Test Accuracy = 73.043

Epoch: 7, Mini-Batches Completed: 20, Loss: 0.096, Test Accuracy = 67.826

Epoch: 7, Mini-Batches Completed: 30, Loss: 0.097, Test Accuracy = 74.783

Epoch: 7, Mini-Batches Completed: 40, Loss: 0.094, Test Accuracy = 77.391

Epoch: 7, Mini-Batches Completed: 50, Loss: 0.100, Test Accuracy = 74.783
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Starting Epoch: 8...

Epoch: 8, Mini-Batches Completed: 10, Loss: 0.092, Test Accuracy = 73.913

Epoch: 8, Mini-Batches Completed: 20, Loss: 0.097, Test Accuracy = 72.174

Epoch: 8, Mini-Batches Completed: 30, Loss: 0.101, Test Accuracy = 73.913

Epoch: 8, Mini-Batches Completed: 40, Loss: 0.094, Test Accuracy = 73.913

Epoch: 8, Mini-Batches Completed: 50, Loss: 0.097, Test Accuracy = 75.652

Starting Epoch: 9...

Epoch: 9, Mini-Batches Completed: 10, Loss: 0.091, Test Accuracy = 72.174

Epoch: 9, Mini-Batches Completed: 20, Loss: 0.092, Test Accuracy = 74.783

Epoch: 9, Mini-Batches Completed: 30, Loss: 0.097, Test Accuracy = 75.652

Epoch: 9, Mini-Batches Completed: 40, Loss: 0.095, Test Accuracy = 72.174

Epoch: 9, Mini-Batches Completed: 50, Loss: 0.093, Test Accuracy = 73.913

Starting Epoch: 10...

Epoch: 10, Mini-Batches Completed: 10, Loss: 0.096, Test Accuracy = 73.043

Epoch: 10, Mini-Batches Completed: 20, Loss: 0.099, Test Accuracy = 73.043

Epoch: 10, Mini-Batches Completed: 30, Loss: 0.094, Test Accuracy = 77.391

Epoch: 10, Mini-Batches Completed: 40, Loss: 0.093, Test Accuracy = 76.522

Epoch: 10, Mini-Batches Completed: 50, Loss: 0.092, Test Accuracy = 77.391

Finished Training
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Appendix H

Outputs of Experiment Four

(VGG 16 Model)

Epoch 0/24

———-

train Loss: 0.8289 Acc: 0.6082 test Loss: 0.6848 Acc: 0.6137

Epoch 1/24

———-

train Loss: 0.5692 Acc: 0.6427 test Loss: 0.4982 Acc: 0.6845

Epoch 2/24

———-

train Loss: 0.5366 Acc: 0.6784 test Loss: 0.5169 Acc: 0.6824

Epoch 3/24

———-

train Loss: 0.5133 Acc: 0.7066 test Loss: 0.4705 Acc: 0.7639

Epoch 4/24

———-

train Loss: 0.4775 Acc: 0.7342 test Loss: 0.5170 Acc: 0.7124

Epoch 5/24
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———-

train Loss: 0.4381 Acc: 0.7606 test Loss: 0.4268 Acc: 0.7897

Epoch 6/24

———-

train Loss: 0.4167 Acc: 0.7825 test Loss: 0.4778 Acc: 0.7446

Epoch 7/24

———-

train Loss: 0.3393 Acc: 0.8262 test Loss: 0.3767 Acc: 0.8112

Epoch 8/24

———-

train Loss: 0.2985 Acc: 0.8619 test Loss: 0.3780 Acc: 0.8112

Epoch 9/24

———-

train Loss: 0.2919 Acc: 0.8682 test Loss: 0.3883 Acc: 0.8112

Epoch 10/24

———-

train Loss: 0.2540 Acc: 0.8947 test Loss: 0.3876 Acc: 0.8219

Epoch 11/24

———-

train Loss: 0.2483 Acc: 0.8976 test Loss: 0.4271 Acc: 0.8090

Epoch 12/24

———-

train Loss: 0.2160 Acc: 0.9108 test Loss: 0.4148 Acc: 0.8219

Epoch 13/24

———-

train Loss: 0.2008 Acc: 0.9171 test Loss: 0.4167 Acc: 0.8219
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Epoch 14/24

———-

train Loss: 0.1724 Acc: 0.9396 test Loss: 0.4090 Acc: 0.8326
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Appendix I

Outputs of Experiment Five

(Inception V3 Model)

Epoch 0/24

———-

train Loss: 0.6186 Acc: 0.6594 test Loss: 0.4795 Acc: 0.7017

Epoch 1/24

———-

train Loss: 0.5566 Acc: 0.6801 test Loss: 0.5013 Acc: 0.7232

Epoch 2/24

———-

train Loss: 0.4977 Acc: 0.7238 test Loss: 0.4484 Acc: 0.7468

Epoch 3/24

———-

train Loss: 0.5023 Acc: 0.7330 test Loss: 0.4891 Acc: 0.7189

Epoch 4/24

———-

train Loss: 0.4646 Acc: 0.7491 test Loss: 0.4243 Acc: 0.7532

Epoch 5/24
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———-

train Loss: 0.4440 Acc: 0.7629 test Loss: 0.4364 Acc: 0.7790

Epoch 6/24

———-

train Loss: 0.4348 Acc: 0.7664 test Loss: 0.4527 Acc: 0.7554

Epoch 7/24

———-

train Loss: 0.3818 Acc: 0.8044 test Loss: 0.3821 Acc: 0.8090

Epoch 8/24

———-

train Loss: 0.3553 Acc: 0.8395 test Loss: 0.4075 Acc: 0.7961

Epoch 9/24

———-

train Loss: 0.3452 Acc: 0.8441 test Loss: 0.4114 Acc: 0.7918

Epoch 10/24

———-

train Loss: 0.3186 Acc: 0.8475 test Loss: 0.4087 Acc: 0.8047

Epoch 11/24

———-

train Loss: 0.3091 Acc: 0.8608 test Loss: 0.4007 Acc: 0.8026

Epoch 12/24

———-

train Loss: 0.3096 Acc: 0.8585 test Loss: 0.3987 Acc: 0.7961

Epoch 13/24

———-

train Loss: 0.2789 Acc: 0.8867 test Loss: 0.4405 Acc: 0.7961
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Epoch 14/24

———-

train Loss: 0.2638 Acc: 0.8930 test Loss: 0.4081 Acc: 0.7983
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Appendix J

Outputs of Experiment Six

(Resnet Model)

Epoch 0/24

———-

train Loss: 0.6799 Acc: 0.6410 test Loss: 0.6229 Acc: 0.6760

Epoch 1/24

———-

train Loss: 0.6155 Acc: 0.6577 test Loss: 0.6541 Acc: 0.6609

Epoch 2/24

———-

train Loss: 0.6159 Acc: 0.6933 test Loss: 0.4303 Acc: 0.7511

Epoch 3/24

———-

train Loss: 0.5249 Acc: 0.7181 test Loss: 0.5273 Acc: 0.7167

Epoch 4/24

———-

train Loss: 0.5304 Acc: 0.7284 test Loss: 0.4956 Acc: 0.7768

Epoch 5/24
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———-

train Loss: 0.5193 Acc: 0.7399 test Loss: 0.4203 Acc: 0.7747

Epoch 6/24

———-

train Loss: 0.4916 Acc: 0.7543 test Loss: 0.5445 Acc: 0.6888

Epoch 7/24

———-

train Loss: 0.3754 Acc: 0.8205 test Loss: 0.3949 Acc: 0.8026

Epoch 8/24

———-

train Loss: 0.3646 Acc: 0.8280 test Loss: 0.3870 Acc: 0.8069

Epoch 9/24

———-

train Loss: 0.3372 Acc: 0.8389 test Loss: 0.3833 Acc: 0.7918

Epoch 10/24

———-

train Loss: 0.3220 Acc: 0.8470 test Loss: 0.3980 Acc: 0.8069

Epoch 11/24

———-

train Loss: 0.3281 Acc: 0.8441 test Loss: 0.4079 Acc: 0.7940

Epoch 12/24

———-

train Loss: 0.2986 Acc: 0.8665 test Loss: 0.3938 Acc: 0.7876

Epoch 13/24

———-

train Loss: 0.2887 Acc: 0.8734 test Loss: 0.3912 Acc: 0.7876
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Epoch 14/24

———-

train Loss: 0.2605 Acc: 0.8941 test Loss: 0.3937 Acc: 0.8069
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